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Abstract. The present paper deals with the motion of a Brownian particle on two identical but shifted
potential surfaces, coupled via a tunneling matrix element in an external electric field. Dissipation is
induced by a heat bath represented by an infinite set of harmonic oscillators with a continuum range
of frequencies. We derive a perturbative solution for the quantum coherence term of the particle system
after performing a small-polaron-like transformation. This is subsequently necessary for the extraction of
an equation that describes the reduced dynamics and the minimal action path of the Brownian particle.
Finally we extract expressions for the population relaxation rate and the pure quantum-dephasing rate of
the two-level system.

PACS. 73.40.Gk Tunneling – 31.70.Hq Time-dependent phenomena: excitation and relaxation processes,
and reaction rates – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

The modelling of Brownian motion and reaction dynam-
ics as a system coupled to a bath of harmonic oscillators
with a continuous range of frequencies is ubiquitous in
physics and chemistry. The approach is common place in
statistical mechanics.

In the present case we consider a two-potential-surface
system coupled via a tunneling matrix element [1–8] with
a particle moving on the surfaces. An external field [14]
is applied as well as the heat bath. The bath in the case
of Brownian motion [9–13] represents the environment,
while in reaction dynamics it describes the possible excited
states of a molecule or condensed medium [15,16].

We note that on the one hand systems coupled via
tunneling have been studied extensively [12]. On the other
hand there exist much discussion on the Brownian motion
on an actual spatial coordinate of a particle. We suppose
that an electric field, being either external or arising from
the structure of the environment, acts on that coordinate.

One possible application of the present model is to
describe electron transfer on macromolecules in a solution,
the action of which is represented as a bath of harmonic
oscillators.

The paper proceeds in the following order. In Section 2
we present the model Hamiltonian and perform a small-
polaron-like transformation on it. This brings us to a stage

a e-mail: egthra@hol.gr

from which we can proceed to apply a perturbative expan-
sion to the terms related with the two-surface system. In
Section 3, using the results of Section 2, we study the two-
level dynamic state transitions. We obtain perturbative
terms for the quantum coherence and the population dif-
ference of the two-surface system, and make calculations
up to second order. In Section 4 we study the motion of a
particle on a system coupled via tunneling potential sur-
faces. The additional, two-surface, modelled component
of the motion induces an additional effective force in the
quasiclassical equation of the motion. There is also a shift
in the form of the potential in the effective action. This
probably arises from the polarization of the two-surface
system itself under the action of the external field in the
fully quantum mechanical treatment. Formally the effect
of this extra component appears with the introduction of
the quantum coherence term of the two-surface system in
all the terms of Section 4. The results of this section re-
semble those derived in the pioneering work of Caldeira
and Leggett [9,17], but they differ considerably because
of the presence of the two-surface system. In Section 5
we derive analytical expressions for the population relax-
ation rate and the pure quantum-dephasing rate, using the
small polaron representation. As an effect of the coupling
of the two-surface system with the spatial coordinate, the
population relaxation rate involves explicitly the time de-
pendent spatial coordinate. Finally in Section 6 we present
our conclusions.
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2 The model Hamiltonian
and small-polaron-like transformation

The present model Hamiltonian can be written as

H = Hs +Ht +Hb +HI. (1a)

The first term Hs describes the system motion in space
and is given

Hs =
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The tunneling term between the two surfaces is de-
scribed by the term Ht where

Ht = Jσx. (1c)

We stress that the coupling matrix element is J . ∆0 is
just a shifting term.

The harmonic oscillator bath is given by the term Hb

where
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The last term in (1e) is present in order to renormalize
the potential [12].

The present case applies in the case of an electric field
on the reaction coordinate. We suppose that both this
field and the harmonic oscillator bath act on the system.
This interaction comes out in the first term in (1e). The
constant ci is proportional to the electric-dipole matrix
element between the two states of the two-level system.

V0(s) is the potential due to the presence of the electric
field on the spatial coordinate. 2∆0 is the energy difference
between the two identical potential surfaces and J is the
tunneling matrix element.

On performing on H a small-polaron-like unitary
transformation using the following operator

U = exp
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we obtain the following expression

see equation (3a) above
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[Qi, Pj ] = iδij . (3e)

Expressing the bath in terms of its normal modes we
obtain
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d2 = A−1FA (4b)
d = diag(di) (4c)

AT = A−1 (orthogonal matrix) (4d)
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In the second quantization form, (4a) can be written as
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Now we split (3a) into three parts

HA = Jσχ (7a)
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We observe that under the small polaron transforma-
tion we have arrived to a form from which a perturbation
expansion is possible.

3 Two-surface system population dynamics

The quantum coherence of the two surface system is
expressed by the matrix elements

Θ+−(t) = 〈+|ρ(t)|−〉 (8a)
Θ−+(t) = 〈−|ρ(t)|+〉 (8b)

while the population difference is given by

P (t) = 〈+|ρ|+〉 − 〈−|ρ|−〉 (8c)

where |+〉, |−〉 are the two local eigenstates of the two
level system and ρ(t) is the reduced density matrix of the
two level system

ρ(t) = TrB[ρt(t)]. (9)

TrB[ ] represents the trace over the environment (the bath
and the reaction path) and ρt(t) is the total density ma-
trix.

Our intention is to derive an expansion with respect to
VAB for the quantum coherence term, which will be used
in a subsequent section.

The total density matrix obeys the Liouville equation

i
dρt(t)

dt
= [HA +HB + VAB, ρt(t)]. (10)

We deal with VAB term using the method of perturbation
theory.

Finally we have the following expression for the expan-
sion of the reduced density matrix of the two-level system
ρ(t) = TrB[ρt(t)], in orders of the interaction VAB
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In the above expression we used the super operator nota-
tion X defined by

SXR = SR−RS
SXRXT = S(RT − TR)− (RT − TR)S

and so on. S, R and T are ordinary operators.
ρ(0) corresponds to an initial equilibrium state den-

sity matrix of the two-level system plus the environment
(consisting of the bath and the reaction path).

We assume that this term factorizes according to

ρ(0) = |g〉〈g|ρB (13)

where |g〉 is the initial state of the two-level system. At
this point we note that |g〉 can be written in the form
|g〉 = a|+〉+ b|−〉, |a|2 + |b|2 = 1. The expression for ρB is
given in the next section.

Since V XAB acts either from the left or from the right
and ρ(n) contains nVAB factors, (12) can be separated into
M = 2n terms denoted as Liouville-space paths. It is nec-
essary to evaluate half of these terms, since they come in
Hermitian conjugate pairs and ρ(n) are Hermitian. Conse-
quently
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while for an initial |+〉 state the population difference is

P (t) = 1− 2 Tr(I+−I+
+−)ρB. (15c)
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Fig. 1. Particle transfer rate versus time with parameters:
∆0 = 0.02, ci = 3.0 × 10−5, ωi = 0.1, β = 0.1, ws = 0.1,
J = 1.0. Three harmonic oscillators have been used.

From this expression the particle transfer rate between the
potential surfaces follows directly via differentiation. In
Figure 1 we plot the rate versus time. We observe a plateau
at a zero value of the rate corresponding to a temporary
population trapping, followed by a dip corresponding to
an increase and a subsequent decrease of the population of
the initial state. Similar results can be obtained for other
initial states.

ρB is the B system density matrix and I++, I−−, I+−,
I−+ are given by the expressions
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∫ t
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Explicit expressions are given in Appendix A.
In the next section we are going to use for Θ(t) the

value

Θ(t) = Θ+−(t) +Θ−+(t). (17)

We use both the present form and a Wick-rotated form.
Additionally we have assumed that an inverted

parabolic potential is added to the two level system due
to the presence of the electric field. Here V0(s) is given by

the expression

V0(s) = −1
2
w2

s s
2. (18)

This form is the result after a Taylor expansion of the
potential of the electric field of the environment near a
saddle point. I.e. under this assumption we have restricted
ourselves to a transition state theory.

4 Reduced dynamics and minimal action path

We easily obtain the reduce Hamiltonian of (1a) by taking
a trace over the two surface system. This results in the
expression
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where F (t) is a term coming from the rest terms of the
initial Hamiltonian (1), and depends on time and some
constants. We note that F (t) does not appear in most
of our final expressions. Θ(t) has been obtained in the
previous section.

The corresponding Lagrangian is the following
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Let K(sf , {Qαf}; si, {Qαi};T ) be the quantum propaga-
tor for the universe (system plus environment), which goes
from coordinates (si, {Qαi}) at time zero to (sf{Qαf}) at
time T . It is given by the expression

K(sf , {Qαf}; si, {Qαi};T ) =∑
n

ψ∗n(si, {Qαi})ψn(sf , {Qαf}) exp(−iEnT ). (21)

In the Feynman path integral form the propagator can
be written as
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By integrating out the normal modes Qα, we can eliminate
the degrees of freedom of the bath and the influence func-
tion, which involves an effective action, drops out. This
can be written as [18,19]

K̃(sf , si;T ) =
∫ ∏
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We assume that we have decoupled forced harmonic oscil-
lators at temperature β at the initial time. φj(Qα) is the
j eigenfunction of the α harmonic oscillator.

We observe that the Lagrangian (20), with respect to
Qα, is that of the sum of forced oscillators, plus some other
terms. Consequently for these oscillators we can write the
path integral expression∫ Q(T )=Qf
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and performing the Gaussian integrations we finally get
the influence phase [18,19]
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N(ω) is the Bose-Einstein distribution function
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The Lagrangian can be simplified by analytically contin-
uing T to imaginary times iθ. Since the resulting α(τ) is
periodic with period β we can continue the imaginary time
outside the range 0 ≤ τ ≤ θ, using the periodic boundary
conditions s(β+τ) = s(τ), Θ(β+τ) = Θ(τ). Finally using
in addition the following expansion
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The last term in (30) has been incorporated into the po-
tential V0(s).

Now we make the crucial assumption that for all
values of ω of interest for the present problem the
spectrum of the environmental oscillators may be treated
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as continuous. Then the generalized spectral density of
the problem has the following form

J(ω, t, t′) =
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Continuing our study under this assumption. Then (27b)
can be rewritten as
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Variation with respect to s(τ) with fixed endpoints
(see (39) bellow) leads to the equation obeyed by the
minimal action path
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s(0) = si, s(θ) = sf . (39)

Now we study the Ohmic case in which the spectral
density has the form

J(ω, τ, τ ′) = Θ(τ)Θ(τ ′)ηω. (40)

With this choice (37) yields

α(τ, τ ′) = Θ(τ)Θ(τ ′)
η

2π
1

(τ − τ ′)2
· (41)

By choosing the potential V0(s) as in Section 3 and
using (41, 38) yields
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1
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s(0) = si, s(θ) = sf . (43)

(42) is an integro-differential equation, which can be
solved numerically.

5 The small polaron representation,
population relaxation rate and pure
dephasing rate

The thermal average of ∆s over the bath is given by the
expression

〈∆s〉b = ∆0〈cos η〉

= ∆0 exp
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as given in Section 2.
Adding and subtracting 〈∆s〉bσz in the Hamilto-

nian (7) and splitting it into two parts with the criterion
that the dynamics generated by the one part, here H̃0,
should be close to those generated by the full Hamiltonian,
we obtain in the so called small polaron representation

H̃ = H̃0 +∆H̃ (46a)

H̃0 = Jσχ − 〈∆s〉bσz +Hb +
1
2
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∆H̃ = (J̃ − J)σχ −∆0(cos η − 〈cos η〉)σz −∆0 sin ησy.
(46c)

Adopting the present second order perturbation descrip-
tion, the population relaxation rate is given by the expres-
sion [21]

Γ =
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−∞
dte2iJt〈∆H̃−+(t)∆H̃+−〉b,s. (47)

We have assumed that the tunneling constant is dom-
inant in comparison to the well’s splitting. Additionally
we note that the statistical average is taken over both
the thermal bath of harmonic oscillators and the initial
and final quantum distribution of position, described by a
density matrix. A path integral as presented in the previ-
ous section can evaluate this density matrix. We note that
F (t) does not appear in the final expression of the density
matrix as can easily be observed.

It is not difficult to extract that

∆H̃+−(t) = ∆(t) + i∆0 sin η (48a)

∆H̃−+(t) = ∆(t)− i∆0 sin η (48b)

where
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Fig. 2. Population relaxation rate versus tunneling coupling
constant for various temperatures. Solid curve: β = 0.1.
Dashed curve: β = 50.0. The rest of the parameters are:
ci = 3.0 × 10−5, ωi = 0.1, ws = 0.1. Three harmonic oscil-
lators have been used.

The average over the bath can be evaluated via standard
theorems of statistical mechanics [20]. The average over
the system is obtained by using a density matrix as de-
scribed above.

Thus (47) can be written as

Γ =
∑
i,l,j

AjiAjl
ci
ω2
i

cl
ω2
l

ωj
dj

∫ ∞
−∞

dte2iJt〈ps(t)ps〉s

× (nj exp(iωjdjt) + (1 + nj) exp(−iωjdjt)). (50)

nj is given by the expression

nj =
1

eβωjdj − 1
· (51)

We have plotted the population relaxation rate versus J
for different temperatures in Figure 2 and for different ws

in Figure 3. We observe an increase in the population re-
laxation rate with increased J as expected, since stronger
tunneling coupling assists population transfer and conse-
quently population relaxation rate.

The pure dephasing rate is given as [21]

ΓPD =
1
2

∫ +∞

−∞
dt
〈(
∆H̃−−(t)−∆H̃++(t)

)
×
(
∆H̃−− −∆H̃++

)〉
b,s
. (52)

On setting

S = ∆0 exp

−2i
∑
i,j

Aji
cis

ω2
i

Dj

 , (53)
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Fig. 3. Population relaxation rate versus tunneling coupling
constant for various ws. Solid curve: ws = 0.1. Dashed curve:
ws = 0.6. Dashed-dotted curve: ws = 1.0. The rest of the
parameters are: ci = 3.0 × 10−5, ωi = 0.1, β = 2.0. Three
harmonic oscillators have been used.

we can write

〈(
∆H̃−−(t)−∆H̃++(t)

)(
∆H̃−− −∆H̃++

)〉
b,s

=

〈
〈S(t)S〉b + 〈S(t)S+〉b+

+〈S+(t)S〉b + 〈S+(t)S+〉b

〉
s

. (54)

As far as the bath averages are concerned we give the value
of one of them. Similar expressions are valid for the others:

〈S(t)S+〉b = ∆2
0

× exp

−∑
i,j

(
A2
ji

c2i
ω4
i

Ajj
ωj
dj

(s2
t + s2)

)
coth

βωjdj
2



×exp

2
∑
i,j

A2
jiAjj

ωj
dj

c2i
ω4
i

sts

 coth βωjdj
2 cos(ωjdjt)

−i sin(ωjdjt)


(55)

where st is a shortening for s(t).
As discussed above the average over the spatial coor-

dinate can be performed using the results of the previous
section.

In Figure 4 we plot the pure dephasing rate versus ws

for different ∆0. We observe an increase of the pure de-
phasing rate with increasing ∆0, since dephasing is pro-
portional to ∆2

0.
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Fig. 4. Pure dephasing rate versus ws. Solid curve: ∆0 = 0.02.
Dashed curve: ∆0 = 0.05. Dashed-dotted curve: ∆0 = 0.07.
The other parameters are: ci = 3.0× 10−5, ωi = 0.1, β = 50.0.
Three harmonic oscillators have been used.

6 Conclusions

In the present study we investigated the solution of a prob-
lem described by the Hamiltonian (1), i.e. the dynamics of
a system with components represented by motion on two
surfaces coupled via tunneling in both an electric field and
a harmonic bath with a continuous range of frequencies.
To achieve that, we used the Hamiltonian (1) in three dif-
ferent, either partitioned or reduced forms, depending on
the quantity we wish to calculate.

Firstly we used a small polaron transformation to ex-
tract dynamical information of the two-surface system,
i.e. the quantum coherence term. Then we used a reduced
form to obtain information concerning the spatial motion.
Finally we used a small polaron representation to obtain
statistical information for the two-surface system.

The new point of the present model is the combination
of the spatial Brownian motion with a two level system.
Independently these systems have already been studied
extensively [1–17]. On comparing our results with the in-
dependent cases we see that the other component induces
new factors into the equations describing the combined
system. In many aspects the means of treating the spe-
cific component remains, in principle the same. For exam-
ple we use the formalism developed originally by Caldeira
and Leggett to integrating out the heat bath degrees of
freedom acting on the system.

Despite its simplicity, our model is able to produce
accurate and tractable expressions. In addition the appli-
cation to electron transfer in macromolecules in solutions,
as discussed in the introduction, appears quite promising.
We are going to use it in future calculations.

Appendix A

After (17) we can write (16a, b, c, d) as

I++ = −∆0

∫ t

0

dt1 cos η = −∆0

2

∫ t

0

dt1[L(t1) + L+(t1)]

(A.1a)

I−− = −I++ (A.1b)

I+− =
∫ t

0

dt1e−2iJt1(J̃ − J − i∆0 sin η)

= −
∫ t

0

dt1e−2iJt1

[
T (t1) +

∆0

2
(
L+(t1)− L(t1)

)]
(A.1c)

I−+ =
∫ t

0

dt1e−2iJt1(J̃ − J + i∆0 sin η)

= −
∫ t

0

dt1e−2iJt1

[
T (t1)− ∆0

2
(
L+(t1)− L(t1)

)]
(A.1d)

where

L(t1) = exp

−2is(t1)
∑
i,j

Aji
ci
ω2
i

Dj(t1)

 (A.2a)

T (t1) = ps(t1)
∑
i,j

Aji
ci
ω2
i

Dj(t1) (A.2b)

and

s(t1) =
sf sinh(wst1) + si sinh(ws(t− t1))

sinh(wst)
(A.3a)

ps(t1) =
wssf cosh(wst1)− wssi cosh(ws(t− t1))

sinh(wst)
(A.3b)

Di(t1) =
ωi
di

Ri cos(ωidit1)−Qi cos(ωidi(t− t1))
sin(ωidit)

·

(A.3c)

The initial time density matrix is given by the expression

ρB = ρs(sf , si)
∏
k

ρ
(k)
B (Rk, Qk) (A.4)

ρ
(k)
B (Rk, Qk) =

(
ωkdk

2π sinh(βωkdk)

)1/2

× exp
{
− ωkdk

2 sinh(βωkdk)
[
(R2

k+Q2
k) cosh(βωkdk)−2RkQk

]}
(A.5a)



E.G. Thrapsaniotis: Brownian motion on potential surfaces coupled via tunneling 247

ρs(sf , si) =
(

ws

2π sin(βws)

)1/2

× exp
{
− ws

2 sin(βws)
[
(s2
i + s2

f ) cos(βws)− 2sisf
]}

.

(A.5b)

(A.5a) represents the density matrix of a harmonic oscil-
lator.

The following expressions are defined in terms of
certain traces that have been calculated in closed form
by the author [22]:

S(t) =
∫ t

0

∫ t

0

dt1dt2e−2iJ(t1−t2)Tr(T (t1)T+(t2)ρB)

(A.6)

W (t) =
∫ t

0

∫ t

0

dt1dt2e−2iJ(t1−t2)

×
[

Tr(T (t1)L(t2)ρB)− Tr(T (t2)L(t1)ρB)−
−Tr(T (t1)L+(t2)ρB) + Tr(T (t2)L+(t1)ρB)

]
(A.7)

U(t) =
∫ t

0

∫ t

0

dt1dt2e−2iJ(t1−t2)

×
[

Tr(L+(t1)L+(t2)ρB) + Tr(L(t1)L(t2)ρB)−
−Tr(L(t1)L+(t2)ρB)− Tr(L+(t1)L(t2)ρB)

]
(A.8)

V (t) =
∫ t

0

∫ t

0

dt1dt2e−2iJ(t1+t2)

×
[

Tr(L+(t1)L+(t2)ρB) + Tr(L(t1)L(t2)ρB)−
−Tr(L(t1)L+(t2)ρB)− Tr(L+(t1)L(t2)ρB)

]
(A.9)

C(t) =
∫ t

0

∫ t

0

dt1dt2

×
[

Tr(L+(t1)L+(t2)ρB) + Tr(L(t1)L(t2)ρB)+
+Tr(L(t1)L+(t2)ρB) + Tr(L+(t1)L(t2)ρB)

]
.

(A.10)

The quantum coherence terms are given by the following
expressions, for the initial state 1√

2
(|+〉+ |−〉)

Θ+−(t) =
∆2

0

4
V (t)− ∆2

0

4
U(t)− ∆2

0

2
C(t) +

1
2
− ∆0

2
W (t)

(A.11)

Θ+−(t) =
∆2

0

4
V (t)− ∆2

0

4
U(t)− ∆2

0

2
C(t) +

1
2

+
∆0

2
W (t).

(A.12)

Similarly for the initial state |+〉 the population differ-
ence is given by

P (t) = 1− 2S(t)− ∆2
0

2
U(t)−∆0W (t). (A.13)

In the same way we can obtain the quantum coherence
terms and the population difference as a function of time,
for any initial state of the two level system.
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